现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
本文是第一个提供全面的系统设计概述以及融合方法选择标准的现实世界合作自动驾驶系统的选择标准,该标准为基础架构增强自主驾驶或IAAD。我们在路边和车辆侧计算和通信平台上介绍了IAAD硬件和软件的深入介绍。我们在现实部署方案的背景下广泛地表征了IAAD系统,并观察到沿着道路波动的网络状况是目前是合作自动驾驶的主要技术障碍。为了应对这一挑战,我们提出了新的融合方法,称为“框架间融合”和“计划融合”,以补充当前最新的“框架内融合”。我们证明,每种融合方法都有其自身的好处和约束。
translated by 谷歌翻译
现在,人工智能(AI)可以自动解释医学图像以供临床使用。但是,AI在介入图像中的潜在用途(相对于参与分类或诊断的图像),例如在手术期间的指导,在很大程度上尚未开发。这是因为目前,使用现场分析对现场手术收集的数据进行了事后分析,这是因为手术AI系统具有基本和实际限制,包括道德考虑,费用,可扩展性,数据完整性以及缺乏地面真相。在这里,我们证明从人类模型中创建逼真的模拟图像是可行的替代方法,并与大规模的原位数据收集进行了补充。我们表明,对现实合成数据的训练AI图像分析模型,结合当代域的概括或适应技术,导致在实际数据上的模型与在精确匹配的真实数据训练集中训练的模型相当地执行的模型。由于从基于人类的模型尺度的合成生成培训数据,因此我们发现我们称为X射线图像分析的模型传输范式(我们称为Syntheex)甚至可以超越实际数据训练的模型,因为训练的有效性较大的数据集。我们证明了合成在三个临床任务上的潜力:髋关节图像分析,手术机器人工具检测和COVID-19肺病变分割。 Synthex提供了一个机会,可以极大地加速基于X射线药物的智能系统的概念,设计和评估。此外,模拟图像环境还提供了测试新颖仪器,设计互补手术方法的机会,并设想了改善结果,节省时间或减轻人为错误的新技术,从实时人类数据收集的道德和实际考虑方面摆脱了人为错误。
translated by 谷歌翻译
本文展示了基于射频(RF)信号的人为合成,该信号利用RF信号可以通过从人体的信号反射记录人类运动的事实。与现有的RF传感作品不同,只能粗略地感知人类,本文旨在通过引入新颖的跨模型RFGAN模型来产生细粒度的光学人体图像。具体地,我们首先构建一个配备有水平和垂直天线阵列的无线电系统以收发RF信号。由于反射的RF信号被处理为水平和垂直平面上的模糊信号投影加热器,因此我们在RFGAN中设计RF提取器,用于RF热图编码并组合以获得人类活动信息。然后,我们使用所提出的基于RF的自适应训练注入由RF-Extrutioner和RNN提取的信息作为GaN中的条件。最后,我们以端到端的方式训练整个模型。为了评估我们所提出的模型,我们创建了两个跨模型数据集(RF-Walk&RF-Activity),其包含数千个光学人类活动帧和相应的RF信号。实验结果表明,RFGAN可以使用RF信号产生目标人类活动帧。据我们所知,这是基于RF信号生成光学图像的第一个工作。
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.
translated by 谷歌翻译
Salient object detection (SOD) aims to determine the most visually attractive objects in an image. With the development of virtual reality technology, 360{\deg} omnidirectional image has been widely used, but the SOD task in 360{\deg} omnidirectional image is seldom studied due to its severe distortions and complex scenes. In this paper, we propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360{\deg} omnidirectional image. Different from the existing methods, the equirectangular projection image and four corresponding cube-unfolding images are embedded into the network simultaneously as inputs, where the cube-unfolding images not only provide supplementary information for equirectangular projection image, but also ensure the object integrity of the cube-map projection. In order to make full use of these two projection modes, a Dynamic Weighting Fusion (DWF) module is designed to adaptively integrate the features of different projections in a complementary and dynamic manner from the perspective of inter and intra features. Furthermore, in order to fully explore the way of interaction between encoder and decoder features, a Filtration and Refinement (FR) module is designed to suppress the redundant information between the feature itself and the feature. Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
translated by 谷歌翻译
Most recent studies on neural constituency parsing focus on encoder structures, while few developments are devoted to decoders. Previous research has demonstrated that probabilistic statistical methods based on syntactic rules are particularly effective in constituency parsing, whereas syntactic rules are not used during the training of neural models in prior work probably due to their enormous computation requirements. In this paper, we first implement a fast CKY decoding procedure harnessing GPU acceleration, based on which we further derive a syntactic rule-based (rule-constrained) CKY decoding. In the experiments, our method obtains 95.89 and 92.52 F1 on the datasets of PTB and CTB respectively, which shows significant improvements compared with previous approaches. Besides, our parser achieves strong and competitive cross-domain performance in zero-shot settings.
translated by 谷歌翻译
This paper aims to improve the Warping Planer Object Detection Network (WPOD-Net) using feature engineering to increase accuracy. What problems are solved using the Warping Object Detection Network using feature engineering? More specifically, we think that it makes sense to add knowledge about edges in the image to enhance the information for determining the license plate contour of the original WPOD-Net model. The Sobel filter has been selected experimentally and acts as a Convolutional Neural Network layer, the edge information is combined with the old information of the original network to create the final embedding vector. The proposed model was compared with the original model on a set of data that we collected for evaluation. The results are evaluated through the Quadrilateral Intersection over Union value and demonstrate that the model has a significant improvement in performance.
translated by 谷歌翻译
Semantic communication (SemCom) and edge computing are two disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse. However, edge computing resources are often provided by computing service providers and thus it is essential to design appealingly incentive mechanisms for the provision of limited resources. Deep learning (DL)- based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties, i.e., individual rationality and incentive compatibility. Therefore, in this work, we introduce the design of the DLbased auction for the computing resource allocation in SemComenabled Metaverse. First, we briefly introduce the fundamentals and challenges of Metaverse. Second, we present the preliminaries of SemCom and edge computing. Third, we review various incentive mechanisms for edge computing resource trading. Fourth, we present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse. Simulation results demonstrate that the DL-based auction improves the revenue while nearly satisfying the individual rationality and incentive compatibility constraints.
translated by 谷歌翻译